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on the segment from the dihedral angle B on one side of plane ==o into the dihedral angle 
B on the other side of that plane; 3) the trajectory on the segment [$-',&I belongs, if only 

partly, to only one angle B on one side of the plane X= 0; and 4) the trajectory on this 
segment passes from one dihedral angle Bi to another dihedral angle Bl. 

To obtain the lower estimate of Ij,we use the estimates: 6(t)>o when y<a: &(t)>,b(l- 
coa 8) when b<v<T>, and d (t)> b (i - cos B) when y >,yJ, where tj is the root of the equation 
Qlj (v) = 0. In cases 3) and 4) we use inequality (4.6) , and in case 4 - the condition p,<fi14, 
4, where p is the smallest angle between the rays (1.6). Summarizing the estimates Ij over 
all segments (Q-1, t'), j = 1, ., it + 1, we obtain the inequality (2.5) required. 

In duscussing this paper the lateV.M.,Alekseyev,V.I. Gurman. V.A. Egorov, and V.B. 
Kolmanovskii made a number of comments for which the authors are grateful. 
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THE POINCARi. AND POINCARi - CHETAYEV EQUATIONS* 

L.M. MAPXBASHOV 

Poincarg's theory of equations in group variables /l/ has been developed 
by Chetayev /2/, by his students, and in a number of other investigations. 
Certain simple observations are made on the Poincare and Poincar&-Chetayev 
(PC) equations which should be useful in the application and further study 
of these equations. 

The equations of motion of a mechanical conservative holonomic system with independent 
coordinates Y~,...,I, written in the form proposed by Poincar;, have the form 

-$LEij(I)qj, kj,a=l, . . ..s 

c?Jc* $Tiy t ) = &a -g + xi.L* 
, 

(0.1) 

(0.2) 

Here L* (z,?)) is the Lagrange function, nl,...,ns are the Poincar: parameters, and 
repeated indices denote summation. The operators 

xi = Ej" (5) & > 
(0.3) 

form the basis of a certain s-dimensional Lie algebra which we will call algebra A 

[Xi, Xpl = clkaXD, i, k, cz = 1, . . ., s (0.4) 

The structural constants are skew symmetric (cir" -Ckia) and satisfy the Jacobi conditions 

Cik"Cajt + CkjaCaie + CjiaC&=O (0.5) 

It is assumed that the local group of transformations of the configurational space (51, 
. . .( %I corresponding to algebra A is transitive, i.e. the following condition holds at the 
general position points: 

det (Eij (r))# 0 (0.6) 

AS to the rest, the operators (0.3) are arbitrary, so that for a given mechanical system 
*Prikl.Matem.Mekhan.,49,1,43-55,198s 
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the number of methods of choosing these operators (apart from isomorphism, and the arbitrari- 
ness of their coordinate realization) is identical with the number of different s-dimensional 
Lie algebras. A very large number of such algebras exists (e.g. even for s = 3 their set 
has the power of a one-dimensional continuum). The arbitrariness shown, here, on the one 
hand, creates difficulties in choosing the algebra adequate for the mechanical system in 
question, but on the other hand it offers new possibilities provided that the choice has been 
made successfully. 

1. Taking into account the non-conservative forces. Properties of the 
right-hand sides of the Poincar6 equations. The Poincare' equations, unlike many 
other forms of equations of motion, are used to describe conservative systems. Non-conservative 
forces are also easily accommodated in these equations, provided that we remember that Eqs. 
(0.2) can be derived from the Lagrange equations by passing to the quasivelocities nl,...,q,, 
chosen using Eqs.(O.l). 

Let a Lagrangian system with s degrees of freedom be acted upon, in addition to potential 
forces, by non-conservative forces Qlr . . ..Q#. Having chosen the algebra A and having denoted 
by 'L*(t,s,n) the result of substituting (0.1) into the Lagrangian function L (t, 2, 2.) :z8* (t, 

r, n) = L (t, z, &jnj), we obtain 

Taking into account the Lagrange equation and commutative relations (0.4), we obtain 

The above equations, which are identical with (0.2) when Q1 = . . . = Q‘= 0 cm be written 
in the form 

=x,'L*$EjiQj, j,i=l,...,s (1.1) 

xi’ = xi + c& -& 3 a,i,j=l,..., s (1.2) 
2 

The resulting Poincarg equations can also be obtained in quasicoordinates /3/ from the 
Boltzmann-Hamel equations. 

Let us write some of the properties of the operators (1.2). 
a) The operators Xl’,...,Xs’ themselves form a basis of a Lie algebra A’ isomorphous 

with the algebra A. Indeed, 

Using the identities (0.5) we obtain 

b) the local group of transformations corresponding to algebra A' is a symmetry group of 
Eqs.(O.l). Indeed, remembering that the operators Xi + (ii)'a/a~~' correspond to the trans- 
formations of the Lagrange variables, we obtain 

c) in arbitrarily chosen system of s operators acting in s-dimensional space, for which 
only condition (0.6) holds, does not form a Lie algebra but is closed, i.e. 

IXi, Xkl = 17i,ca (2) Xa 

The procedure of deriving the Poincare/ equation from the Lagrange equations requires the 
quantities cilia to be constant. The equations of motion can be written for a closed system 

of operators in the form 

d 

dt +X&* + 5j'Qj (1.3) 

The additional arbitrariness in the choice of the operators can be used to reduce (in a 
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non-unique manner) the kinetic energy of a scleronomic system to a sum of squares T -= l;J1lkT. 
Equations (1.3) will then take the form 

'li'=nhi(l) %qj + Ej' 

i 

-$ + (zj) , L"=T-_U 

9 
Cf.41 

i,j,z=l,..., s 

In a number of mechanical problems the corresponding transformation appears in a unique 
manner and generates a Lie algebra directly. Thus the kinematic Euler eouations (inversion 
of Eqs.(O.l)) 

lead to the Poincari equations of motion of a heavy rigid body about a fixed point, identical 
to the Euler equations for this problem /l/. The corresponding operators C0.3~ 

define the algebra of a group of rotations 

IX,. S,l = x,. ix,. x,1 = x,, IX,. x,1 = x, 

Mechanical systems with Euclidean configurational space are simpler examples. The 
corresponding algebras are commutative. 

2. Poincari-Chetayev equations. Let II, . . ., r, be the coordinates of a mechanical 
system with 12 -_d kinematic constraints parametrized by the Poincard variables 91,. . .3 ‘Is 

with 

a,, 

Passing to the Lagrange function L' and changing somewhat the arguments of Sect.1, WC 

obtain 

z,’ - EJ’ (yhj. j=-I..... s. i=i ,_..) n (2.1) 

We shall assume that the parametrization (2.1) generates an s-dimensional Lie algehra 
the basis 

~i===E,'(.r)-&...., X.=E,'(r)-&-, i==l,...,n (8 < 4 i2.2) 
, 

The possible translations of the system are defined in terms of the idependent parameters 
. . . w, 

6Zi -= &’ (I) 0;. d-21 . . . . . 11, j-l, ._... r‘ 

The general equation of dynamics yields 

(2.4) 

Conditions (2.3) yield the relation 

first obtained by Chetaysv /2/ under the assumption that there were no non-conservative forces 
present. The equation is written in reduntant coordinates. Just as in the Poincare' equations, 

the operators 

Xj'=Xi+c~j~~. j,k,a=-i,...,s 

form a basis of a Lie algebra [St', Xk'l = c;,"x,'. Certain well-known equations of dynamics are 

in fact the PC equations, e.g. the Euler-Poisson equations with 

*, = y, _ sin 8 sin CF. I~= y, = sin0 Cos q, z5 = yj = 

cos 0, n1 = I', ',* = Q* 13 = r 

3. Poincare'eqUStiOnS for Special type non-holonomic SyStems. The derivation 
of the PC equations in Sect.2 resembles the derivation o, l the equations of motion of the non- 

holonomic systems /3/. The only formal difference between the PC equations and equations of 



non-holonomic dynamics is the requirement that the operators (2.2) generate an S-dimensional 
Lie alaebra. --- --q---- This requixement, however brings us at once to the problem of the integrability 
of the kinematic constraints and hence to the conclusion that the PC equations axe unsuitable 
for non-holonomic systems. 
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The Poincare'equations were written almost simultaneously with the basic forms of the 
equations of motion of non-holonomic systems. Notwithstanding the considerable degree of 

resemblance, both theoriesweredeveloped independently of each other over a long period of 
time. Generalized PC equations suitable for both holonomic and non-holonomicsystemswere 
obtained in /4/. The property of the procedures mentioned above makes it possible to separate 
a single type of mechanical systems which can be described by the PC equations without any 
modifications, irrespective of whether the kinematic constraints are integrable or non-inte- 
grable. 

Let xl,,..,xn be the coordinates of the system constrained by n--s perfect, stationary 

kinematic constraints of the form ariXi'= 0, and only by those constraints (they can be either 

holonomic, or non-holonomic); L is the Lagrange function and Q1, . . ..Q., are the active non- 
conservative forces acting on the system. We shall assume that the constraints can be para- 
metrized by (2.1) is such amanner, thatthecorresponding s operators (2.2) generate an n-dimen- 
sional Lie algebra, for which condition (0.6) is satisfied. We will free the system from the 

constraints by replacing their actions by the reactions of the constraints RI,...,&. Replac- 
ing in the Lagrange function the velocities Xi-by the parameters ?jt according to the formulas 

Xi* = &i’(X) Tjl + s e e + Ei’(.T)tla + El”” (X)%1 + . . . + tin (Xhn (3.1) 

we shall write II equations of motion of the released system in the form of the Poincare/ equa- 
tions (1.1) 

(3.2) 

Putting 
%+I = 0%. . 6 9 qn = 0 (3.3) 

we satisfy the constraint equations, Then Eqs.(3.2) and relations (3.3) will describe the 
motion of the initial system and determine, together with the conditions for the constraints 
to be ideal, the resulting reactions of the constraints. Thanks to the homogeneity of the 
constraint equations, the possible translations coincide with the actual translations, and we 
therefore have 

6xi = Ei’ (X) 01 + . . * + E,’ (Z) 0. (3.4) 

Then the conditions for the constraints to be ideal, taking Eqs. (3.4) into account, 
yield 

&l(2$RRi==0,..., &'(z)Ri==O, i =l,...,n (3.51 

Thus the motion of the system in question is described by the first s Poincare'equations 
(3.2) with conditions (3.3) 

(3.6) 

and the s equations (3.5) together with the remaining n-s equations of (3.2) 

E~YR~=-& -E- -X,'L*-_jVQjl y=s+I,...,n 
( 1 a% 

(3.7) 

(?&r=...=n?&=O) 

enable us, thanks to conditions (0.61, to calculate the constraint reactions It,, . . ..fi.. We 
note that the first and last term of (3.6) and of the equations in quasicoordinates given in 
/3/, are identical. 

Example. We shall consider the motion of a plate with an edge running along the inclined 
plane /3/. Here 

The operators X, =eoscpdia~+~inoeiay,x,= a@, generating the three-dimensional Lie algebra 

]X2.X1]=--sinp-;i; d +cos+x,, [XI, X,] =o, I-%X,]=X1 

correspond to the parametrization of the constraint equations by means of the relations I'= 
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rll ~0s Q, 3’ = rll sin Q, .Q’ = q. , According to (3.1) we have 

2' = nx cos Q - thein Q, y' = nz sin Q + nrcos Q, Q' = nf 

Further, we obtain 
(3.8) 

xi= - SiXI Q& +cOS Q&S & 

The equations of motion '1X. = gsin ueos Q, 'tp' = 0, q* = 0 and (3.8) are easily integrated 

rla=o, Q =ot+Q,, 
gsinc _ 

rh-C+~slnQ 

C 
+=z~+~ 

g&la 
(SinQ -SiDQd+ r(COS2Q@-cOS2Q) 

c 
#=Yoi-?j-(COSQo- COSQ)+ .+fSie2Q,,- sin 2Q)+F,t 

Under the conditions of the problem 

R, cos Q -+- &sin Q = 0, RI, = 0, - R, sin Q + R1 cos Q = g sin a sin Q f ?I~ 

we obtain, from equations (3.5), (3.7), the constraint reactions 

RI = - (g ?in a fin Q + qIq8) sin cp, Rz= (gsinasincp+7j&cosp 

4. The Poincari equations in terms of redundant parameters. Let us consider 
once again a holonomic system with s degrees of freedom, the Lagrange function L and the 
generalized forces Ql, . . ..Qc We shall assume that s operators (0.3) satisfying condition 
(0.6) and generating an n>s-dimensional Lie algebra, were chosen on the strength of certain 
arguments. Having determined the Lagrangian velocities from the formulas 

Xi* = gi' (2) '?I + . . . + 5i” 12) qnr i=l, . . ..s (4.1) 

we can obtain directly, as in Sect.2, n identities (2.4) whose left sides are connected, by 
virtue of condition (0.61, by n-s linear relations. Just as in the case of the mechanical 
System in question, the Lagrange equations hold and the variables zl,. . .,z,; fll,..., Q will 
satisfy (4.1) and the n equations 

d 6i5* 
dtirtlj c ) =X,‘L*+E,jQ,, i=l,..., s, j=l,..., n (4.2) 

of which s are algebraically independent. These s independent equations will ELescribe the 
behaviour of the variables .r1,...,x5; ql,,..,qs for any, arbitrarily specified functions 

Gil = Gil (t, s). * Iln = Tjn (t, 5) (4.3) 

(in particular, we can put in the first s equations of (4.2) ns+t-_ . ..= qln = 0). The passage 

to the reduntant parameters can only be justified when the arbitrariness of the functions (4.3) 
can be dealt with in a resonabfe manner. 

5. Connection with Noether' s theorem. Linear integrals. Letus consider the 
actionoftheoperators (1.2) formingtheright-handsidesoftheequationsofmotion (1.1) inthe 
space of the initial Lagrangian variabhs 5,~' 

Thus the function Xi’L* is proportional to the total variation of the Lagrange function 
L acted upon by the local none-parameter group of transformations of the space {x,x‘) 

Equations (1.1) can now be written in.the form 

(5.1) 

(5.2) 
If for some i, e.g. i = 1, 

XCL + &j’Qj =L 0 
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the equations of motion admit of the first integral aL*iaqr = cone. 
When there are no non-conservative forces, this represents a special case of the 

Noether's theorem. If the constraints of the system are scleronomic, then conversely, the 
existence of a linear integral 0 = ~tX~'= const will apply the existence of a local, one- 

parameter group of transformations with the operator X,O, for which relation (5.2) will hold. 

Indeed, in the case in question L=l/,qjs;~j'- u(*) and the functions .&.,, ha can be 
found from the formulas aij&j' = Pi. Having additionally defined the operators X,, . . . . X. so 

as to obtain the algebra A, we construct system (5.1). Since 

the first equation of (5.1) yields (5.2). 
The determination of linear integrals traditionally involves the concept of cyclic 

displacements introduced by Chetayev in /2/. Although the presence of cyclic displacements 
imposes stricter conditions on the equations than Noether's theorem, it often meets with 
success. 

Let us consider in greater detail condition (5.2) for the case of a rheonomic system 
moving under the action of positional, gyroscopic and dissipative forces 

Having required that the equation of the type (5.2) 

% j + + (Ej)’ $+%jQj=O 
j 

be satisfied identically in * xr,....,x, t we obtain 

(5.3) 

Conditions (5.3) were obtained by tensor methods in /5/ for the case when ai=~~=Q:'k)= 
Qy)=O. Here the first subsystem of (5.3) was reduced to the well-known Killing equations 
defining the local group of motions of a Riemannian space with the metric d.P= OijdZidZj. 

System (5.3) is overdefined, and, as a rule, is integrable in specific mechanical cases. 
It may also have no solutions. 

The main difficulty encountered in the problem of linear integrals is that of obtaining 
the effective conditions of their existence expressed in terms of the Lagrange function and 
its derivatives. The problem has been solved in /6/ only for S= 2 and s=3. More general 
formulations of the Noether's theorem also enable integrals of a more general type to be 
obtained /7/. 

6. Canonical formofPoincare"s equations. This form of Poincare's equations was 
obtainedbychetayev in /2/. The Chetayev's procedure admits also of non-conservative forces. 
Letus consider Eqs.(l.l) using the assumptions concerning the mechanical system made in Sect.1. 
We find the function H* ('2, y) using the formula 

L* (~$11) = ViYi -H* (5, Y) (6.1) 

and assuming that the new parameters Y, are defined by the relations 
(6.1) we obtain aL*laxi = -tMi+lax,, qi = dIPlay,, 

yi = aL*li+qi& Varying 
and equations (0.1) and (1.1) will now take 

the form 

Xi’ =r Y,*H* t Yi’ = -_Xi*H* + %j’Qj, i, j = 1, . . ., S (6.2) 

Y{* (6.3) 

In (6.1) H* is the Hamiltonian function: 

Equations (6.2) can also be obtained directly from Hamilton's equations. To do this it 
is sufficient, having chosen the algebra A (see Sect.l), 
xi' = aHlap,, pr = -8Hldxi -I- Q1 

to carry out in Hamilton's equations 
a linear substitution of the moments using the formulas 
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Y, = &"(x)Pi. We must also put H* = H (2, a&, ak Ei ' k = 8~'(6,'is the Kronecker delta. 
The operators Yi* form the basis of the commutative Lie algebra 

lY,*, Yk*] -0 (6.4) 

This follows from the identities 8~'k/ayi~Oo. The operators Xi+ generate a Lie algebra 
isomorphic with algebra A. Indeed, 

[x,*,Xk*]=(&*%j'- xk*%;)-& + (~~,x.~*~y-~y,~k*~,)~= 

? 1 

c$%j' &-($c& + c$b)Y~-& 

I 2 

Using the Jacobi conditions (0.5) we obtain 

1X,*, xk*]= $k%ja& $- c~kc~j~y$= cgx,* (6.5) 
I 

i,k,a=L...,s 
9 

The system of 2s operators Y1*,...,Y,; X,*,...,X,*, acting in 2s-dimensional phase 
space is closed and has a simple multiplication table defined by the cummutative relations 
(6.4), (6.5) and 

[Xi*,Yk*]=$Yj* (6.6) 
2 

The latter can easily be confirmed 

[xi*,Y,*]=(xi%kJ-Yk*c,jyy )a- v ayj - ( 
Ev'z$ + cjr%ky -& = 

1 > , 
at,' 3 aski 

%y')aly ayj=Ej'alj dy, 
a+yj* 

, 

The matrix of the operators (6.3) is (the prime denotes transposition) 

0 z 
M= 

II I 
, ( r=(Ej’), u=(&$ gj’=-cjiyyv (6.7) 

--T cr 

The matrix 0 is skew symmetric (cji = --c,~Y~, = cj,Yyy= -fij), SO that when s is odd, we 

have deto = 0. In addition to u, all principal diagonal minors of the matrix M are also 

skew symmetric. Those of odd order are degenerate. By virtue of condition (0.6) det n/3 = 
(det T)~ # 0. 

In case of the usual Hamiltonian system sji= 6j', c,~V = 0, yj = pi, Xi* = dlaxi, Y,* = 3/api 
the motion (6.7) takes the form 

0 E 
M= 

il B -E 0 

and the operators (6.3) define a &-dimensional commutative Lie algebra. 

7. Operator of displacement along the trajectories of motion. The operator 
of displacement along the trajectories of motion of an autonomous system of equations zi' = 

fi tz) will be understood to be the operator of differentiation, with respect to time, of the 
functions defined in the phase space {z}: 

S=+=ii+ 
I 

Let us consider a mechanical conservative system with stationary constraints described 
by Eqs.(6.2). The displacement operator of such a system 

can be represented in the form 

S I Y,*H* -& - Xi*H* -& 
I ‘ 

Indeed, using the notation of (6.3) we obtain 

S=- $$y,*+gxi* 
t 1 

(7.1) 
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Thus the displacement operator S belongs to a linear shell stretched over the operators 
Yt*, x**. If the algebra A is chosen in such a manner that 

at,’ atjf 
rE...=F=o, i=l ,..., s; j-l-!-i,...,s 

1 1 

and 

aH* aH* --p 
at=““-- 1 a=1 

then 

s aH* 
I -r Y:,, - 

it1 
. ..--YY.*+gXi* 

s I 

(7.2) 

(7.3) 

(7.4) 

The system of equations 

y,+1*0 = . . . = y,*o = x,*0 = . . . = x,*0 = 0 

is compatible. and everyone of its solutions is a first integral of the equations of motion 
(6.2). (This follows from the formulas (7.41, (6.4)-(6.6). Such a situation arises, in 
particular, in the case when zr,..., r( are explicit ignorable coordinates. 

The properties of the displacement operator S can have various applications. The simplest 
applications are discussed in Sects.8 and 9. 

8. Non-linear first integrals of mechanical systems moving inertially. 
Let a mechanical system move inertially and let its kinetic energy depend only on the para- 
meters yl,. . ., y,. Then 

H*=T(y), s==zx,* 
1 

The system of equations 

x,*0 = . . . = x,*0 = 0 (8.1) 

is consistent and has, according to condition (0.6), exactly s functionally independent 
solutions. The solutions represent the first integrals of the equations of motion, and at the 
same time the invariants of the corresponding local groups of transformations. We shall 
restrict ourselves to the case 8 = 3. We shal seek the first integrals depending on the para- 
meters Y1. ye, YS only. Equations (8.1) will then take the form 

(8.2) 

Since deta = 0, at least one integral of the system exists. If the algebra A is non- 
cummutative, then it will be a unique integral ofthe form 0 = 0 (y), in every case discussed 
below. 

We shall utilize the results obtained in /8/ where the whole space of structural con- 
stants 

cijv 
of the three-dimensional Lie algebra is split by the explicit algebraic conditions 

into parts corresponding to the mutually non-isomorphic algebras. The three-dimensional 
algebras split into two series, discrete and continuous. The discrete series contains five 
algebras (not including the commutative), and the continuous series contains a countless number 
of algebras. 

The algebras of discrete series are separated by the condition 

(CtlZ + cU3)* + (c1*1 + c182)* + (cl*1 - cz*3)* = 0 

After integrating Eqs.(8.2), we obtain a family of first integrals 

0 = c3*1Y1z + c,,*Y,* + c 21J 5* + 2C,,%,Y* t- SCdYlY$ + 2Cl,3Y,Y, Y (8.3) 

The local groups corresponding to the algebras of finite series , can be realized in the 
form of the following groups of transformations: a group of rotations, a group of motions 
of a Lobachevskii plane in a Euclidean plane , and a group of Lorentz and Galileo transform- 
ationsofthetwo-dimensional space-time. In accordance with this the quadratic forms (8.3) 
differfromeachotherinthelr, signatures (using a non-degenerate change of variable we can 
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reduce Yi to the corresponding canonical forms: Y," + Ys2 +Y,s, Y12 + Yea - YS2> y1* + Y%at y,* - Ys2. 
Y1?. 

The algebras of the continuous series are separated by the condition 

(cm* + C*2)2 + (as' + czs5)2 i (ClPl - cz.??' > 0 

and we can assume, without loss of generality, e.g. that c,~~+c,,*+O~ 
Using the structural constants we calculate explicitly the characteristic parameter a,, 

which can take all real values. The non-isomorphic algebras correspond to two different 
values of the parameter. We will put 

al= y1-p@43t u>==y2- voy3 

(if ssl i tag* + 0, then the parameters have finite values). 
When co = a*(a>O), we obtain the fi!:;vktegral 

0=[2e&~ + (cl,---&-a(el 13 + 48)) ulpct' :: [%a2 -I- (48 -4, + a(c& -I- c&))ulln-* 

and when CO= -aP(a>O), we have integrals of the form 

An algebra for which cO = 0 and (c~~*)~ -I- (c132)a f (cms)2 > 0, is singled out as singular 
(we can assume e.g. without loss of generality that claz f 0). The corresponding first integral 
can be written in the form 

In the limiting case cO = 0, (c231)2 -k (~~32)~ i (cl?")2 = 0 we also have the corresponding 
singular algebra of the continuous series and the first integral 

We note a characteristic aspect here, that in the Chetayev variables Y,,Y,,Ys all 
integrals obtained depend only on the structure of the algebra A. 

Detailed discussions of the structure of three-dimensional Lie algebras were instrumental 
in solving a mechanical problem, i.e. in computing the additional first integrals. The problem 
can obviously be inverted, so that integration of Eqs.(8.1) will yield the structural 
characteristics of the Lie algebras of dimension s> 3. 

9. Particular solutions of the equations of motion generated by the non- 
cyclic first integrals. The linear envelope of the operators (6.3) contains, together 
with the displacement operator S, the commutators [S,Xi*], [S,Yi*]. Indeed, using Eq.(7.1) we 
obtain 

Let 0 be the first integral of system (6.2) when Q, = . . . = OS = & so = 0. We write 

Xi* 0 = ai, Yi*O = bi (9.2) 

If the integral 0 does not correspond to any explicit ignorable coordinate, then not 
all functions air bi will be identically zero. Let us assume that the system of equations 

al = bi = 0, i = 1 1 ..,s (9.3) 

is consistent. Then the system will define a particular integral of Eqs.(6.2). This follows 

directly from (9.1): 

Sa, = pijbj _t vijaj, Sbi = ni”bj + pi’aj 

It should be noted that the assertion concerning the particular integrals can be regarded 
as a modification of the theorem on stationary motions, supplying an extremum to one of the 
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integrals on the level surfaces of the remaining integrals /9/. The possiblity of obtaining 
particular solutions can be found useful even in the case of fully integrable problems. 

The question of the dimensionalityofthe manifold (9.3) requires a separate assessment. 
Here we shall only note that in many mechanical problems the dimension is not less than one. 
This is explained by the fact that the properties of the generating integrals 0 and the matr 
(6.7) make it possible to obtain linear identity relations connecting the functions (9.2). 
Since So - 0, one of these relations will always be 

,ix 

As an example we shall consider the Euler-Poisson equations for the problem of the motion 
of a heavy rigid body about a fixed point. These equations represent the PC equations (Sect.2) 
and are identical at the same time with their canonical form (provided that we return in the 
latter to the variables). Since we have here an ignorable coordinate, it follows 
that the displac?&& operator S is a linear combination of five operators only (see (7.4)). 
A slightly different formulation of this operator is also of interest. The formulation is 
obtained directly from the representation (7.1) 

s = &lx,* + qxz* -- rx3* -+ Pz, Y, + Py, 1; + Pq Y, 

where 

(9.4) 

The operators (9.4) generate a six-dimensional Lie algebra , and the group corresponding 
to it can be realized as a group of motions of a three-dimensional Euclidean space. 

We have two identities of different origin 

YlY, i Y*Y* + ysys = 0, APY, -I Bay, t- cry, + y,x,* + YpXz. +YJ,* = 0 

The existence of the first identity is explained by the redundant nature of the variables 

Yl, Y!a> YS? and the second is caused by the presence of an ignorable coordinates. No other 
linear relations exist. Since the operators (9.4) exist in a six-dimensional space, the 
system of equations 

I'io=Xi*o=O, i=l, 2, 3 

is consistent and has exactly two solutions, namely the angular momentum integral relative to 
the vertical, and the geometrical integral. Consequently, the integrals shown cannot generate 
any particular solutions. In the Euler case (ze=yc=zc= 0) ~=pX,*f qX,*+rX1*, and the system 
of equations X1*o= X,*o = X,*0= 0 yields another integral, namely the Euler integral (this 
is the first integral of (8.3) corresponding to the group of rotations). 

Let us list some particular solutions generated by non-cyclic first integrals. 
The energy integral 

H = ‘/*(ApZ + Bq* + C6 i P (%:‘I i YCYZ + ‘eY*) 

leads to a family of permanent rotations. 
In the Euler case the Euler integral generates a particular integral /lo/ 

Aply, = Bqyr = C~~YJ 
In the Lagrange case (.Q = y, = 0,A = S) the integral e= r gives permanent rotations of a 

special type: 
p = q = 0, r = ro, y, = y* = 0, ys = fl 

We will take the generating first integral in the form of a combination of the Lagrange 
integral and the energy integrate o = l/z A (p*-f q2) + Pzcy, + cd + f+ 

where CLIP are constant coefficients. System (9.3) reduces to four equations 
p!yl = q/y, = k, fl = Chy, - 2ar, (2aA - C) rh + BAh + PL& = 0 

Substituting this particular integral into the equations of motion yields a family of regular 
precessions /lo/ 

p = hy,, Q = hy,, ~1' = QY?. ~2' = - Ry,, R =(A - C)lr,A+ Pz&A 
I = const, r = ra, y3 = y30 = const, Ay,0A2 - Cr,h + Pr, = 0 

IntheKovalevskayacase (ye= zc= 0, A =B = 2C) we shall consider the combination of the 
Kovalevskayaandthe energy integral 

o = (PZ - 92 - ny1)Z + (2Pq - ay,)? + a w + q? + ‘1, 9 + ay,) 
n = PZJC 

When c= 0, we obtain the following solutions: 
a particular integral for the Delaunay case /lo/ 

p2 - q* - ay1 = 0, 2pq - ay, = 0 
a particular form of permanent rotations 

q = r = y* = YS = 0, p = p,) = const, y, = * 1 

pendulum motions /ll/ 
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p = q = y* = 0, r’ = - ay2, y,’ = r-y,, y*’ = - r-y, 

permanent rotations . 

p=po=const, P =o, y1 = $. ( YP’O, aw 

p+ 2$ *=, 
( 1 

=pP 

pendulum motions 

When Q = -2 (d/q*, 1 = 2cpy, + 2cpy, + cqs, we obtain a family of particular solutions corresponding 
to the intersection of the Kovalevskayaand Bobylev-Steklov cases /lo/ 

p=pO=s+, q=o, 
1 

"TM, u1=& (i - va%) 
I 

Yl' = T YPYS. *.=_y 

Using the Euler angles 

*,‘=v, cp'=vcos8, 8'=&0scp, sincp=2Tsia8 
1 

v =z = con.& 

we can write the equations of motion in the form 

We see that if (a/2~)2<+, then the 8 coordinate oscillates and the variation in o 
corresponds to rotational motion. When (a/2v)* > va , then cp oscillates and (3 "rotates". When 
(o/zv)* = v* , both motions tend asymptotically to one of the permanent rotations of the body with 
the centre of mass lying on the vertical , while retaining their synchronization. 

In the Goryacbev-Chaplygin case (le=4= 0, A =B= 4C; ~=4Cp~,+4C~~+ Cqr=o) we take 
the generating integral in the form of a combination of the Goryachev-Chaplygin and energy 
integrals 

o = r(p"i- P) - "PYs+ a (4Pz+ 421 ++ 2ay,), a = PSJC 

This yields a family of particular solutions /12/ 

P = 2ay.9 (‘1, - by&, q = lay&, r = 8a (by,? - I/*) 
Y~=---by$i31,y,*-l, b=o/32az (a#~) 

The quantity ys is calculated by inverting the quadrature obtainedfromthe equation 

y3y3' = *?a [i - vd - (byg4 - s/,y,*+ 1)+ 

We conclude by noting the following. A method of deriving stationary solutions from the 
system of equations ao/aziL 0, where o is a bundle of known first integrals and pi are phase 
variables, allied to the Levi-Civita method, is well-known. Use of the operators x,*,Yi* for 
this purpose shows two differences: 1) there is no need to include in the bundle the periodic 
integrals and integrals resulting from the redundancy of the variables; 2) particular solutions 
can be obtained from the integrals appearing on the degenerate levels of periodic integrals 
(sch as e.g. the Goryachev-Chaplygin integral). 

The author thanks V.V. Rumyantsev for valuable comments. 
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THEORY OF THE MOTION OF SYSTEMS WITH ROLLING* 

N.A. FUFAEV 

A mathematical model is proposed for describing the motions of a system 
with rolling, and with or without slippage. Conditions axe given for the 
transition from one mode of motion to another, Examples are included. 

Boiling without slippage is equivalent to determining a kinematic constraint, generally 
rheonomic /l/, described by differential equations linear with respect to the generalized 
velocities. The equations cannot usually be reduced to finite relations connecting the general- 
ized coordinates, and therefore rolling without slippage represents a motion with a non- 
holonomic constraint. Study of the motion of a system with rolling, taking slippage into 
account, reduces to the study of the dynamics of a system with releasing kinematic constraints. 
Two problems arise in this context. 

lo. Using differential equations to describe the motion of a system with rolling in the 
general case; 

20 * Establishing the conditions for transferring from one rolling mode to another. 
In the classical mechanics of non-holonomic systems where rolling without slippage is 

usually discussed, the second problem disappears, and the first problem was solved by Chaplygin, 
Voronets,Boltzmann, Hamel, et al. When a wheel with an elastic deformable type rolls without 
slippage, kinematic constraints appear which differ considerably from the classical non- 
holonomic constraints arising when a rigid body is rolling. The general equations of motion 
of a wheeled carriage executing small deviations from its uniform rectilinear motion were given 
in /2/, where the Keldysh theorem concerning the rolling motion of a wheel with an elastic 
tyre was used. The equations were generalized in /3/ to the case of the curvilinear motion of 
a wheeled carriage along a trajectory of fairly small curvature. 

In general, the equations of motion of a system with rolling have the simplest form in 
the moving coordinate system /4, 5/ and must be written in the formofequations in quasi- 
coordinates. As we know, the equations of motion of a non-holonomic system are also written 
in this form /6/, therefore the equations in quasicoordinates are the most suitable for des- 
cribing the motion of a system with rolling, with or without slippage. We must however 
generalize the well-known Boltzmann-Hamelequations to the case of a system with rheonomic 
kinematic constraints. The equations in quasicoordinates obtained in this manner solve the 
first of the above problems and can be used as a basis for the general theory of the motion of 
systems with rolling. 

Investigation of the structural features of the phase space of a system with rolling also 
enables the second problem to be solved. It also becomes clear that the equations of kinematic 
constraints describing rolling without slippage can be regarded as the equations of some 
hypersurface II in phase space. For the case of rolling without slippage we have the corre- 
sponding motion of a phase point along the surface Il in the region stable with respect to 
deviations from the surface n. By determining the boundaries of this region we can solve 
the problem of the conditions governing the passage from rolling without slippage to rolling 
with slippage, and we can find the conditions for the reverse process to occur. 

1. General equations of dynamics for a system with rolling. 
of the system with rolling be defined by n generalized coordinates 

Let the position 

without slippage by 
ql. qa, . . ., q,,, and rolling 

n-m equations of the form 

at* (9, t1 4s' + al (9, 1) = 0 

(1 = m -I- 1, m -I- 2, . . ., n) 
(1.1) 
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